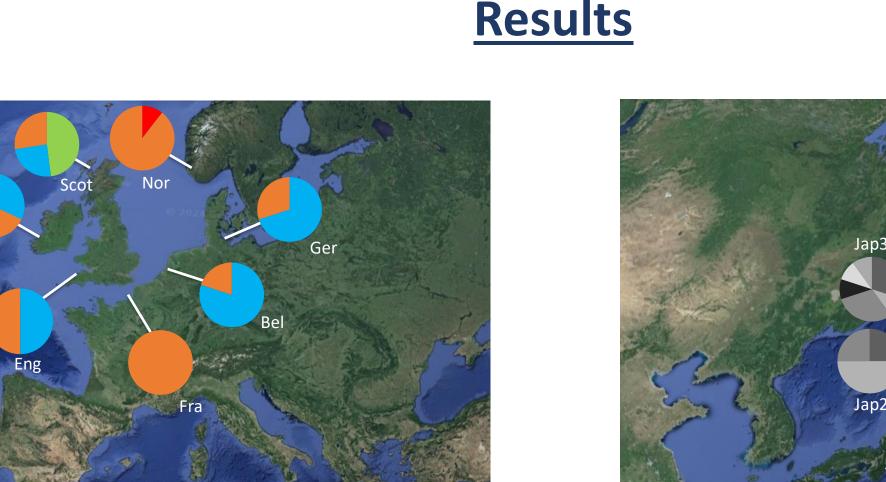
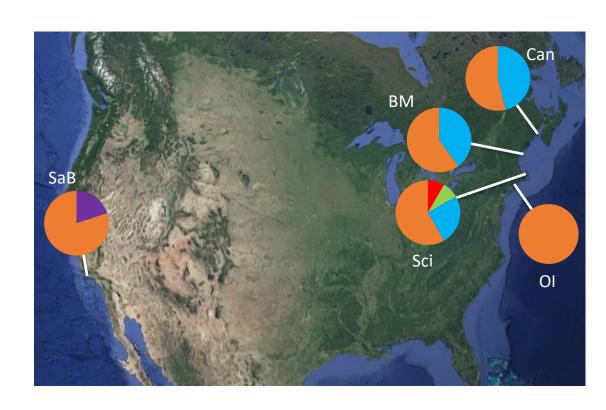
Genetic variation within and between populations of the invasive skeleton shrimp, Caprella mutica, from Maine to Long Island Sound and beyond

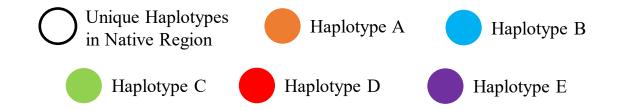



Surian, Aidan; Cole, Kaitlin; Smyth, Rheannon; and Jarrett, Jeremiah Biology Department, Central Connecticut State University jarrettj@ccsu.edu

Introduction

- The skeleton shrimp, *Caprella mutica* (Figures 1 and 2), is native to northeast Asia, but has been widely introduced in the Northern Hemisphere and has significantly increased in these non-native regions over the last 40 years (Ashton et al., 2008).
- Our project goal was to document the genetic variation within non-native *C. mutica* populations on the scale of 100's of kilometers from the Gulf of Maine to Long Island Sound (Figure 1) as well as to compare genetic variation with other non-native





- populations and native populations using data from Ashton et al. (2008).
- We report here on our progress utilizing PCR protocols for amplifying the mitochondrial DNA marker (cytochrome *c* oxidase subunit 1 gene) of *C. mutica* from samples collected from Outer Island, CT (OI) (41.24°N,72.76°W), Harpswell Cove, ME (BM) (43.79°N, 69.96°W), and Scituate, MA (SCI) (42.2°N, 70.73°W) as well as subsequent genetic analyses.

Methods

- DNA was extracted using Red Extract-N-Amp Tissue PCR kit (Sigma Aldrich) followed by standard PCR protocols to sequence the cytochrome *c* oxidase subunit 1 mitochondrial gene using forward and reverse primers (see Ashton et al. 2008).
- GenElute PCR Clean Up Kit (Sigma Aldrich) was used to clean up the PCR products after which samples were sequenced.
- Sequences were aligned and ambiguities were checked against complementary fragments using Geneious Prime.
- Arlequin 3.5 was used to calculate pairwise F_{sT} measures between collection sites and Φ-statistics to compare genetic

Figure 3. Locations and proportions of *Caprella mutica* haplotypes from Ashton et al. (2008) in combination with data from Outer Island, CT, Scituate, MA, and Harpswell Cove, ME. N=2 (England) to 102 (Scottland). Native populations each had several unique haplotypes . (= h39, = h38) haplotypes dominated the non-native populations

	SCOT	NOR	IRE	GER	FRA	ENG	BEL	CAN	BM	SCI	OI	SAB	J1	J2	J3	J4	
SCOT		+	+	+	+	-	+	+	-	+	+	+	+	+	+	+	
NOR	+		+	+	-	_	+	+	-	-	-	-	+	+	+	+	
IRE	+	+		+	+	-	+	-	-	-	-	+	+	+	+	+	
GER	+	+	+		+	-	-	-	-	+	+	+	+	+	+	+	
FRA	+	-	+	+		-	+	+	+	+	-	+	+	+	+	+	
ENG	-	-	-	-	-		-	-	-	-	-	-	+	+	+	+	
BEL	+	+	+	-	+	-		-	-	+	+	+	+	+	+	+	
CAN	+	+	-	-	+	-	-		-	-	+	+	+	+	+	+	
BM	-	-	-	-	+	-	-	-		-	-	-	+	+	+	+	
SCI	+	-	-	+	+	-	+	-	-		-	-	+	+	+	+	
01	+	-	-	+	-	-	+	+	-	-		-	+	+	+	+	
SAB	+	-	+	+	+	-	+	+	-	-	-		+	+	+	+	
J1	+	+	+	+	+	+	+	+	+	+	+	+		-	+	+	Source of
J2	+	+	+	+	+	-	+	+	+	+	+	+	-		-	-	variation
J3	+	+	+	+	+	+	+	+	+	+	+	+	+	-		-	
J4	+	+	+	+	+	+	+	+	+	+	+	+	+	-	-		Among
Table 1 . Matrix of F _{sT} p values (+: p > 0.05; -: p ≤ 0.05). I highlights significant genetic differentiation between Native and Non-native populations. I highlights lack of genetic differentiation among samples from Long Island Sound,											groups Among populations within groups						

Table 1. Matrix of F_{ST} p values (+: p > 0.05; -: p ≤ 0.05). ■ highlights significant genetic differentiation between Native and Non-native populations. ■ highlights lack of genetic differentiation among samples from Long Island Sound, Massachusetts Bay, and the Gulf of Maine (present study). ■ highlights lack of genetic differentiation among samples in our study and populations in Norway, Ireland, England, and Santa Barbara. ■ highlights lack of genetic differentiation among Canada, Maine, and Massachusetts populations and genetic differentiation between Canada and Long Island Sound populations.

Source of variation	d.f.	Sum of squares	Variance components	Percentage of variation
Among groups	1	160.830	1.76678 Va	42.50
Among populatio within groups	ns 14	179.419	0.59866 Vb	14.40
Within populatio	ns 307	550.184	1.79213 Vc	43.11
Total	322	890.433	4.15756	

Table 2. Largest percent variation (42.5%) was explained when comparing Native and Non-native populations (AMOVA). AMOVA results for Ocean Basin (N=3) and Coastline (N=4) explained less of the observed variation.

differentiation among geographic regions using AMOVA. We specifically tested 1) native vs. non-native, 2) ocean basin, and 3) coastline.

Figure 2. *Caprella mutica* male.

Figure 1. *Caprella mutica* female.

References

Ashton, G. V., Stevens, M. I., Hart, M. C., Green, D. H., Burrows, M. T., Cook, E. J., & Willis, K. J. (2008). *Molecular Ecology*, *17*(5), 1293-1303.

Discussion

- Our samples from Harpswell ME, Scituate, MA, and Outer Island, CT revealed no genetic differentiation among these populations.
- These findings could result from a single introduction followed by rapid expansion or separate introductions from the same native population.
- As described by Ashton et al. (2008), and reconfirmed in our present study, genetic differentiation among Native and Nonnative populations explains at least 42% of the variation observed. We are unable to identify native population origins for the three non-native populations in our study.

Acknowledgements

- Research was supported by a CSU-AAUP Summer Research grant and the Outer Island Foundation.
- Thank you to Dr. David Carlon and Dr. Clayton Penniman for logistical support and to the staff of the Stewart B. McKinney

RESEARCH POSTER PRESENTATION DESIGN © 2015 www.PosterPresentations.com